IT ์•Œ์•„๊ฐ€๊ธฐ

[์ธ๊ณต์ง€๋Šฅ ์•Œ์•„๊ฐ€๊ธฐ] ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ข…๋ฅ˜

์žก์‹๋ƒฅ์ด 2025. 2. 6. 12:18

๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์ข…๋ฅ˜ ์ •๋ฆฌ ๐Ÿ“š

๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ํฌ๊ฒŒ ์ง€๋„ํ•™์Šต(Supervised Learning), ๋น„์ง€๋„ํ•™์Šต(Unsupervised Learning), ๊ฐ•ํ™”ํ•™์Šต(Reinforcement Learning), ๋”ฅ๋Ÿฌ๋‹(Deep Learning)์œผ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ๊ฐ๊ฐ์˜ ์œ ํ˜•์—๋Š” ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์žˆ์œผ๋ฉฐ, ๋ชฉ์ ์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ๋ฐฉ๋ฒ•์„ ์„ ํƒํ•ด์•ผ ํ•ฉ๋‹ˆ๋‹ค.


๐Ÿ”น 1. ์ง€๋„ํ•™์Šต (Supervised Learning)

์ •๋‹ต(Label)์ด ์ฃผ์–ด์ง„ ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ์ž…๋ ฅ(X)๊ณผ ์ถœ๋ ฅ(Y)์ด ์กด์žฌํ•˜๋ฉฐ, ๋ชจ๋ธ์ด X → Y ๊ด€๊ณ„๋ฅผ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

โœ… ์ง€๋„ํ•™์Šต ์ฃผ์š” ์•Œ๊ณ ๋ฆฌ์ฆ˜

์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๋ช… ์ฃผ์š” ํ™œ์šฉ ๋ถ„์•ผ

KNN (K-Nearest Neighbors) ๊ฐ€์žฅ ๊ฐ€๊นŒ์šด ์ด์›ƒ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ๋ถ„๋ฅ˜ ๋˜๋Š” ํšŒ๊ท€ ์ˆ˜ํ–‰ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜, ์˜๋ฃŒ ์ง„๋‹จ
์„ ํ˜• ํšŒ๊ท€ (Linear Regression) ์ž…๋ ฅ ๋ณ€์ˆ˜์™€ ์ถœ๋ ฅ ๋ณ€์ˆ˜์˜ ์„ ํ˜• ๊ด€๊ณ„๋ฅผ ์ฐพ์Œ ์ฃผ๊ฐ€ ์˜ˆ์ธก, ์ง‘๊ฐ’ ์˜ˆ์ธก
๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€ (Logistic Regression) ๋ถ„๋ฅ˜ ๋ฌธ์ œ์— ์‚ฌ์šฉ๋˜๋Š” ํšŒ๊ท€ ๋ชจ๋ธ (์‹œ๊ทธ๋ชจ์ด๋“œ ํ•จ์ˆ˜) ์ŠคํŒธ ๋ฉ”์ผ ๋ถ„๋ฅ˜, ์งˆ๋ณ‘ ์ง„๋‹จ
SVM (Support Vector Machine) ์ดˆํ‰๋ฉด์„ ์ด์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„๋ฅ˜ ์–ผ๊ตด ์ธ์‹, ๋ฌธ์„œ ๋ถ„๋ฅ˜
์˜์‚ฌ๊ฒฐ์ •๋‚˜๋ฌด (Decision Tree) ๋ฐ์ดํ„ฐ๋ฅผ ํŠธ๋ฆฌ ํ˜•ํƒœ๋กœ ๋ถ„๋ฅ˜ ๊ณ ๊ฐ ์ดํƒˆ ์˜ˆ์ธก, ์˜๋ฃŒ ์ง„๋‹จ
๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ (Random Forest) ์—ฌ๋Ÿฌ ๊ฐœ์˜ ๊ฒฐ์ • ํŠธ๋ฆฌ๋ฅผ ๊ฒฐํ•ฉํ•œ ๋ชจ๋ธ ๊ธˆ์œต ์‚ฌ๊ธฐ ํƒ์ง€, ์งˆ๋ณ‘ ์˜ˆ์ธก
XGBoost / LightGBM ๋ถ€์ŠคํŒ… ๊ธฐ๋ฒ•์„ ํ™œ์šฉํ•œ ๊ฐ•๋ ฅํ•œ ML ๋ชจ๋ธ Kaggle ๋Œ€ํšŒ, ๊ธˆ์œต ๋ถ„์„

๐Ÿ”น 2. ๋น„์ง€๋„ํ•™์Šต (Unsupervised Learning)

์ •๋‹ต(Label)์ด ์—†๋Š” ๋ฐ์ดํ„ฐ๋กœ ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด์„ ํ•™์Šตํ•˜์—ฌ ๊ตฐ์ง‘ํ™”(Clustering)๋‚˜ ์ฐจ์› ์ถ•์†Œ(Dimensionality Reduction)๋ฅผ ์ˆ˜ํ–‰ํ•ฉ๋‹ˆ๋‹ค.

โœ… ๋น„์ง€๋„ํ•™์Šต ์ฃผ์š” ์•Œ๊ณ ๋ฆฌ์ฆ˜

์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๋ช… ์ฃผ์š” ํ™œ์šฉ ๋ถ„์•ผ

K-ํ‰๊ท  ๊ตฐ์ง‘ํ™” (K-Means Clustering) ๋ฐ์ดํ„ฐ๋ฅผ K๊ฐœ์˜ ๊ทธ๋ฃน์œผ๋กœ ์ž๋™ ๋ถ„๋ฅ˜ ๊ณ ๊ฐ ์„ธ๋ถ„ํ™”, ์ด๋ฏธ์ง€ ์••์ถ•
DBSCAN ๋ฐ€๋„๊ฐ€ ๋†’์€ ๋ฐ์ดํ„ฐ ํฌ์ธํŠธ๋ฅผ ๊ตฐ์ง‘ํ™” ์ด์ƒ ํƒ์ง€, ๋ฐ์ดํ„ฐ ๋…ธ์ด์ฆˆ ์ œ๊ฑฐ
PCA (Principal Component Analysis) ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ ์ €์ฐจ์›์œผ๋กœ ์ถ•์†Œ ์ด๋ฏธ์ง€ ์••์ถ•, ์œ ์ „์ž ๋ฐ์ดํ„ฐ ๋ถ„์„
Autoencoder ์‹ ๊ฒฝ๋ง ๊ธฐ๋ฐ˜ ์ฐจ์› ์ถ•์†Œ ๊ธฐ๋ฒ• ์ด์ƒ ํƒ์ง€, ๋ฐ์ดํ„ฐ ์••์ถ•

๐Ÿ”น 3. ๊ฐ•ํ™”ํ•™์Šต (Reinforcement Learning)

๋ณด์ƒ(Reward)๊ณผ ๋ฒŒ์ (Penalty)์„ ํ†ตํ•ด ํ•™์Šตํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ, AI๊ฐ€ ํ™˜๊ฒฝ์—์„œ ํ–‰๋™ํ•˜๋ฉด์„œ ๋ณด์ƒ์„ ์ตœ๋Œ€๋กœ ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ•™์Šตํ•ฉ๋‹ˆ๋‹ค.

โœ… ๊ฐ•ํ™”ํ•™์Šต ์ฃผ์š” ์•Œ๊ณ ๋ฆฌ์ฆ˜

์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๋ช… ์ฃผ์š” ํ™œ์šฉ ๋ถ„์•ผ

Q-learning ๋ณด์ƒ์„ ์ตœ๋Œ€๋กœ ํ•˜๋Š” ํ–‰๋™์„ ํ•™์Šต ๊ฒŒ์ž„ AI, ๋กœ๋ด‡ ์ œ์–ด
Deep Q-Network (DQN) ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ Q-learning ์•ŒํŒŒ๊ณ , ์ž์œจ์ฃผํ–‰
PPO (Proximal Policy Optimization) ์ •์ฑ… ๊ธฐ๋ฐ˜ ๊ฐ•ํ™”ํ•™์Šต ๋กœ๋ด‡ ์ปจํŠธ๋กค, ์ฃผ์‹ ํˆฌ์ž
A3C (Asynchronous Advantage Actor-Critic) ๋ฉ€ํ‹ฐ์Šค๋ ˆ๋“œ ํ•™์Šต ๋ฐฉ์‹ ๊ฐ•ํ™”ํ•™์Šต ์‹ค์‹œ๊ฐ„ ๊ฒŒ์ž„ AI

๐Ÿ”น 4. ๋”ฅ๋Ÿฌ๋‹ (Deep Learning)

๋”ฅ๋Ÿฌ๋‹(Deep Learning)์€ ๋จธ์‹ ๋Ÿฌ๋‹์˜ ํ•œ ๋ถ„์•ผ๋กœ, **์ธ๊ณต์‹ ๊ฒฝ๋ง(Neural Networks)**์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค.

โœ… ๋”ฅ๋Ÿฌ๋‹ ์ฃผ์š” ์•Œ๊ณ ๋ฆฌ์ฆ˜

์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๋ช… ์ฃผ์š” ํ™œ์šฉ ๋ถ„์•ผ

CNN (Convolutional Neural Network) ์ด๋ฏธ์ง€ ๋ถ„์„์„ ์œ„ํ•œ ์‹ ๊ฒฝ๋ง ์–ผ๊ตด ์ธ์‹, ์ž์œจ์ฃผํ–‰
RNN (Recurrent Neural Network) ์ˆœ์ฐจ ๋ฐ์ดํ„ฐ ํ•™์Šต ์Œ์„ฑ ์ธ์‹, ๊ธฐ๊ณ„ ๋ฒˆ์—ญ
LSTM (Long Short-Term Memory) ๊ธด ์‹œํ€€์Šค๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” RNN ์ฃผ๊ฐ€ ์˜ˆ์ธก, ์ฑ—๋ด‡
GAN (Generative Adversarial Network) ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜๋Š” ์‹ ๊ฒฝ๋ง ๋”ฅํŽ˜์ดํฌ, ์ด๋ฏธ์ง€ ์ƒ์„ฑ
Transformer ์ž์—ฐ์–ด ์ฒ˜๋ฆฌ์— ์ตœ์ ํ™”๋œ ์‹ ๊ฒฝ๋ง ์ฑ—GPT, ๋ฒˆ์—ญ ๋ชจ๋ธ

๐Ÿš€ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ ํƒ ๊ฐ€์ด๋“œ

์–ด๋–ค ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์„ ํƒํ•ด์•ผ ํ• ๊นŒ์š”?

๋ฌธ์ œ ์œ ํ˜• ์ถ”์ฒœ ์•Œ๊ณ ๋ฆฌ์ฆ˜

์ด์ง„ ๋ถ„๋ฅ˜ (0 ๋˜๋Š” 1 ์˜ˆ์ธก) ๋กœ์ง€์Šคํ‹ฑ ํšŒ๊ท€, SVM, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ
๋‹ค์ค‘ ํด๋ž˜์Šค ๋ถ„๋ฅ˜ ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, XGBoost, ์‹ ๊ฒฝ๋ง
์—ฐ์†๊ฐ’ ์˜ˆ์ธก (ํšŒ๊ท€) ์„ ํ˜• ํšŒ๊ท€, ๋žœ๋ค ํฌ๋ ˆ์ŠคํŠธ, XGBoost
๋น„์Šทํ•œ ๋ฐ์ดํ„ฐ ๊ทธ๋ฃนํ™” K-ํ‰๊ท , DBSCAN
์ด๋ฏธ์ง€ ๋ถ„์„ CNN
์ž์—ฐ์–ด ์ฒ˜๋ฆฌ Transformer (BERT, GPT)
์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ๋ถ„์„ LSTM, RNN
๊ฒŒ์ž„ AI, ๋กœ๋ด‡ ์ œ์–ด ๊ฐ•ํ™”ํ•™์Šต (DQN, PPO)

๐Ÿ“Œ ๊ฒฐ๋ก 

๋จธ์‹ ๋Ÿฌ๋‹์—๋Š” ๋‹ค์–‘ํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์กด์žฌํ•˜๋ฉฐ, ๋ฐ์ดํ„ฐ์˜ ํŠน์„ฑ๊ณผ ๋ฌธ์ œ ์œ ํ˜•์— ๋”ฐ๋ผ ์ ์ ˆํ•œ ๋ฐฉ๋ฒ•์„ ์„ ํƒํ•˜๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ๋งŽ๊ณ  ๋ณต์žกํ•œ ๊ฒฝ์šฐ ๋”ฅ๋Ÿฌ๋‹์„, ๋ฐ์ดํ„ฐ๊ฐ€ ์ ๊ณ  ํ•ด์„์ด ํ•„์š”ํ•œ ๊ฒฝ์šฐ ์ „ํ†ต์ ์ธ ๋จธ์‹ ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ํ™œ์šฉํ•˜๋ฉด ํšจ๊ณผ์ ์ž…๋‹ˆ๋‹ค.

728x90